Counting and Testing Dominant Polynomials

نویسندگان

  • Arturas Dubickas
  • Min Sha
چکیده

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Counting Polynomials of Some Nanostructures

The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.

متن کامل

Arithmetic Circuits and the Hadamard Product of Polynomials

Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. • We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is comple...

متن کامل

Computing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G)  euv nu (e)  nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...

متن کامل

Arithmetic Circuit Size, Identity Testing, and Finite Automata

Let F〈x1, x2, · · · , xn〉 be the noncommutative polynomial ring over a field F, where the xi’s are free noncommuting formal variables. Given a finite automaton A with the xi’s as alphabet, we can define polynomials f(mod A) and f(div A) obtained by natural operations that we call intersecting and quotienting the polynomial f by A. Related to intersection, we also define the Hadamard product f ◦...

متن کامل

Total Polynomials of Uniform Oriented Matroids

In this paper we introduce polynomials associated with uniform oriented matroids whose coefficients enumerate cells in the corresponding arrangements. These polynomials are quite useful in the study of many enumeration problems of combinatorial geometry, such as counting faces of polytopes, counting Radon partitions, counting k-sets, and so forth. We also describe some striking equations relati...

متن کامل

On Counting Generalized Colorings

The notion of graph polynomials definable in Monadic Second Order Logic, MSOL, was introduced in [Mak04]. It was shown that the Tutte polynomial and its generalization, as well as the matching polynomial, the cover polynomial and the various interlace polynomials fall into this category. In this paper we present a framework of graph polynomials based on counting functions of generalized colorin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015